Abstract
Graphitic carbon nitride (g-C3N4) with a porous nano-structure, nitrogen vacancies, and oxygen-doping was prepared by the calcination method. Then, it was combined with ZnIn2S4 nanosheets containing zinc vacancies to construct a three-dimensional (3D) flower-like Z-scheme heterojunction (pCN-N/ZIS-Z), which was used for photocatalytic hydrogen evolution and the degradation of mixed pollutants. The constructed Z-scheme heterojunction improved the efficiency of photogenerated charges separation and migration, and the large surface area and porous characteristics provided more active sites. Doping and defect engineering can change the bandgap structure to improve the utilization of visible light, and can also capture photogenerated electrons to inhibit recombination, so as to promote the use of photogenerated electron-hole pairs in the photocatalytic redox process. Heterojunction and defect engineering synergized to form a continuous and efficient conductive operation framework, which achieves the hydrogen production of pCN-N/ZIS-Z (9189.8 µmol·h−1·g−1) at 58.9 times that of g-C3N4 (155.9 µmol·h−1·g−1), and the degradation rates of methyl orange and metronidazole in the mixed solution were 98.7% and 92.5%, respectively. Our research provides potential ideas for constructing a green and environmentally friendly Z-scheme heterojunction catalyst based on defect engineering to address the energy crisis and environmental restoration.
Funder
National Natural Science Foundation of China
Guangzhou Science and Technology Program key projects
Guangdong Provincial Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献