Multifunctional Composite Coatings Based on Photoactive Metal-Oxide Nanopowders (MgO/TiO2) in Hydrophobic Polymer Matrix for Stone Heritage Conservation

Author:

Fruth Victor,Todan LigiaORCID,Codrea Cosmin Iulian,Poenaru Iuliana,Petrescu Simona,Aricov LudmilaORCID,Ciobanu Madalina,Jecu Luiza,Ion Rodica MarianaORCID,Predoana Luminita

Abstract

Multifunctional composite coatings composed of metal oxide nanoparticles dispersed in polymer matrices are an advanced solution to solve the problem of stone heritage deterioration. Their innovative design is meant to be stable, durable, transparent, easy to apply and remove, non-toxic, hydrophobic, and permeable. Coating formulations for the protection of buildings and monuments have been intensively researched lately. Such formulations are based on multifunctional composite coatings incorporating metal oxides. The present work aims to combine the hydrophobic properties of sodium polyacrylate (NaPAC16) with the antimicrobial effectiveness, with promising antimicrobial results even in the absence of light, and good compatibility of MgO (a safe to use, low cost and environmentally friendly material) and TiO2 (with antibacterial and antifungal properties), in order to develop coatings for stone materials protection. MgO (pure phase periclase) and TiO2 (pure phase anatase) nanopowders were prepared through sol–gel method, specifically routes. Aqueous dispersions of hydrophobically modified polymer (NaPAC16, polyacrylic acid sodium salt) and MgO/TiO2 nanopowders were deposited through layer-by-layer dip coating technique on glass slides and through immersion on stone fragments closely resembling the mosaic stone from the fourth century AD Roman Mosaic Edifice, from Constanta, Romania. The oxide nanopowders were characterized by: Thermal analysis (TG/DTA), scanning electron microscopy (SEM), X-ray diffraction (XRD), BET specific surface area and porosity, and UV–Vis spectroscopy for band gap determination. An aqueous dispersion of modified polyacrylate polymer and oxide nanopowders was deposited on different substrates (glass slides, red bricks, gypsum mortars). Film hydrophobicity was verified by contact angle measurements. The colour parameters were evaluated. Photocatalytic and antimicrobial activity of the powders and composite coatings were tested.

Funder

Ministerul Cercetării şi Inovării

European Social Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3