Abstract
Surface decoration by means of metal nanostructures is an effective way to locally modify the electronic properties of materials. The decoration of ZnO nanorods by means of Au nanoparticles was experimentally investigated and modelled in terms of energy band bending. ZnO nanorods were synthesized by chemical bath deposition. Decoration with Au nanoparticles was achieved by immersion in a colloidal solution obtained through the modified Turkevich method. The surface of ZnO nanorods was quantitatively investigated by Scanning Electron Microscopy, Transmission Electron Microscopy and Rutherford Backscattering Spectrometry. The Photoluminescence and Cathodoluminescence of bare and decorated ZnO nanorods were investigated, as well as the band bending through Mott–Schottky electrochemical analyses. Decoration with Au nanoparticles induced a 10 times reduction in free electrons below the surface of ZnO, together with a decrease in UV luminescence and an increase in visible-UV intensity ratio. The effect of decoration was modelled with a nano-Schottky junction at ZnO surface below the Au nanoparticle with a Multiphysics approach. An extensive electric field with a specific halo effect formed beneath the metal–semiconductor interface. ZnO nanorod decoration with Au nanoparticles was shown to be a versatile method to tailor the electronic properties at the semiconductor surface.
Subject
General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献