Effect of Copper Doping on Electronic Structure and Optical Absorption of Cd33Se33 Quantum Dots

Author:

Zhao Fengai,Hu Shuanglin,Xu Canhui,Xiao Haiyan,Zhou Xiaosong,Zu Xiaotao,Peng Shuming

Abstract

The photophysical properties of Cu-doped CdSe quantum dots (QDs) can be affected by the oxidation state of Cu impurity, but disagreement still exists on the Cu oxidation state (+1 or +2) in these QDs, which is debated and poorly understood for many years. In this work, by using density functional theory (DFT)-based calculations with the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid functional, we clearly demonstrate that the incorporation of Cu dopants into the surface of the magic sized Cd33Se33 QD leads to non-magnetic Cu 3d orbitals distribution and Cu+1 oxidation state, while doping Cu atoms in the core region of QDs can lead to both Cu+1 and Cu+2 oxidation states, depending on the local environment of Cu atoms in the QDs. In addition, it is found that the optical absorption of the Cu-doped Cd33Se33 QD in the visible region is mainly affected by Cu concentration, while the absorption in the infrared regime is closely related to the oxidation state of Cu. The present results enable us to use the doping of Cu impurity in CdSe QDs to achieve special photophysical properties for their applications in high-efficiency photovoltaic devices. The methods used here to resolve the electronic and optical properties of Cu-doped CdSe QDs can be extended to other II-VI semiconductor QDs incorporating transition-metal ions with variable valence.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

President Foundation of CAEP

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3