Stacked Dual-Band Quantum Well Infrared Photodetector Based on Double-Layer Gold Disk Enhanced Local Light Field

Author:

Liu Chang,Zuo Xuan,Xu Shaohui,Wang Lianwei,Xiong Dayuan

Abstract

We propose a stacked dual-band quantum well infrared photodetector (QWIP) integrated with a double-layer gold disk. Two 10-period quantum wells (QW) operating at different wavelengths are stacked together, and gold nano-disks are integrated on their respective surfaces. Numerical calculations by finite difference time domain (FDTD) showed that the best enhancement can be achieved at 13.2 and 11.0 µm. By integrating two metal disks, two plasmon microcavity structures can be formed with the substrate to excite localized surface plasmons (LSP) so that the vertically incident infrared light can be converted into electric field components perpendicular to the growth direction of the quantum well (EZ). The EZ electric field component can be enhanced up to 20 times compared to the incident light, and it is four times that of the traditional two-dimensional hole array (2DHA) grating. We calculated the enhancement factor and coupling efficiency of the device in the active region of the quantum well. The enhancement factor of the active region of the quantum well on the top layer remains above 25 at the wavelength of 13.2 μm, and the enhancement factor can reach a maximum of 45. Under this condition, the coupling efficiency of the device reaches 2800%. At the wavelength of 11.0 μm, the enhancement factor of the active region of the quantum well at the bottom is maintained above 6, and the maximum can reach about 16, and the coupling efficiency of the device reaches 800%. We also optimized the structural parameters and explored the influence of structural changes on the coupling efficiency. When the radius (r1, r2) of the two metal disks increases, the maximum coupling efficiency will be red-shifted as the wavelength increases. The double-layer gold disk structure we designed greatly enhances the infrared coupling of the two quantum well layers working at different wavelengths in the dual-band quantum well infrared photodetector. The structure we designed can be used in stacked dual-band quantum well infrared photodetectors, and the active regions of quantum wells working at two wavelengths can enhance the photoelectric coupling, and the enhancement effect is significant. Compared with the traditional optical coupling structure, the structure we proposed is simpler in process and has a more significant enhancement effect, which can meet the requirements of working in complex environments such as firefighting, night vision, and medical treatment.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3