Efficient Removal of Hexavalent Chromium from an Aquatic System Using Nanoscale Zero-Valent Iron Supported by Ramie Biochar

Author:

Tan Xiangpeng,Shaaban MuhammadORCID,Yang Jianwei,Cai Yajun,Wang Buyun,Peng Qi-An

Abstract

In this study, ramie biochar (RBC) was used to activate nano zero-valent iron (nZVI) to enhance hexavalent chromium (Cr(VI)) removal. The best results were obtained at a pyrolysis temperature of 600 °C, a biochar particle size of < 150 μm, and an iron to carbon ratio = 1:1. Under the optimal conditions, the removal of Cr(VI) by RBC600-nZVI (98.69%) was much greater than that of RBC600 (12.42%) and nZVI (58.26%). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) revealed that the reaction mechanism at the Fe and Cr interface was a multiple interaction mechanism with reduction dominated, adsorption, and co-precipitation simultaneously. The enhanced performance of RBC600-nZVI resulted from the effective dispersion of nZVI on the surface of RBC600, therefore increasing the adsorption activity sites. At the same time, RBC600 and nZVI exerted a synergistic influence on the composite structure, which jointly promoted the reduction reaction of Cr(VI) and removed more Cr(VI). This study shows that RBC-nZVI is a potentially valuable remediation material that not only provides a new idea for the utilization of ramie waste, but also effectively overcomes the limitations of nZVI, thus, achieving efficient and rapid remediation of Cr(VI).

Funder

Yiwu Science and Technology Research Institute

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3