Abstract
Ag+ pollution is of great harm to the human body and environmental biology. Therefore, there is an urgent need to develop inexpensive and accurate detection methods. Herein, lignin-derived structural memory carbon nanodots (CSM-dots) with outstanding fluorescence properties were fabricated via a green method. The mild preparation process allowed the CSM-dots to remain plentiful phenol, hydroxyl, and methoxy groups, which have a specific interaction with Ag+ through the reduction of silver ions. Further, the sulfur atoms doped on CSM-dots provided more active sites on their surface and the strong interaction with Ag nanoparticles. The CSM-dots can specifically bind Ag+, accompanied by a remarkable fluorescence quenching response. This “turn-off” fluorescence behavior was used for Ag+ determination in a linear range of 5–290 μM with the detection limit as low as 500 nM. Furthermore, findings showed that this sensing nano-platform was successfully used for Ag+ determination in real samples and intracellular imaging, showing great potential in biological and environmental monitoring applications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献