Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold

Author:

Li KaiORCID,Wang Dazhi,Zhang Fangyuan,Wang Xiaoying,Chen Hairong,Yu Aibing,Cui Yuguo,Dong Chuanhe

Abstract

A novel method called tip-viscid electrohydrodynamic jet printing (TVEJ), which produces a viscous needle tip jet, was presented to fabricate a 3D composite osteochondral scaffold with controllability of fiber size and space to promote cartilage regeneration. The tip-viscid process, by harnessing the combined effects of thermal, flow, and electric fields, was first systematically investigated by simulation analysis. The influences of process parameters on printing modes and resolutions were investigated to quantitatively guide the fabrication of various structures. 3D architectures with high aspect ratio and good interlaminar bonding were printed, thanks to the stable fine jet and its predictable viscosity. 3D composite osteochondral scaffolds with controllability of architectural features were fabricated, facilitating ingrowth of cells, and eventually inducing homogeneous cell proliferation. The scaffold’s properties, which included chemical composition, wettability, and durability, were also investigated. Feasibility of the 3D scaffold for cartilage tissue regeneration was also proven by in vitro cellular activities.

Funder

National Natural Science Foundation of China

State Key Laboratory of Digital Manufacturing Equipment and Technology

Natural Science Foundation of Zhejiang Province

Aerospace Science Foundation of China

State Key Laboratory of Mechanics and Control of Mechanical Structures

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study and numerical simulation of water-sand two-phase flow in fracture network;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-01-04

2. Is 3D Printing Promising for Osteochondral Tissue Regeneration?;ACS Applied Bio Materials;2023-03-21

3. Bioinspired gelatin nano-film implanted into composite scaffold exhibiting both expandable adhesion and enhanced proliferation;International Journal of Biological Macromolecules;2022-11

4. 3D Printing for Bone-Cartilage Interface Regeneration;Frontiers in Bioengineering and Biotechnology;2022-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3