Abstract
In the current study, layered metallic vanadium disulfide (VS2) is fabricated by a liquid-phase exfoliation method, and its microstructures as well as optical characteristics are investigated. Based on first-principles calculations, the band structure and density of the states of both bulk T-VS2 and monolayer H-VS2 are illustrated, showing the metallic behavior with a zero band gap. By using VS2 as the saturable absorber in a doubly Q-switched Tm:YAP laser with an EOM, the Q-switching laser pulses at 2 μm with 22 ns and 200 Hz are generated, corresponding to the single pulse energy of 755 μJ and the peak power of 34.3 kW. The coupled rate equations of the doubly Q-switched laser are given, and the numerical simulations agree with the experimental results. The results indicate that VS2 is a promising nanomaterial due to its nonlinear optical property. The doubly Q-switched laser demonstrates a high level of performance in reducing pulse width and enhancing pulse peak power.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Taishan Young Scholar Program of Shandong Province
Subject
General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献