Spectral Characteristics Simulation of Topological Micro-Nano Structures Based on Finite Difference Time Domain Method

Author:

Ma Xiaoran,Du BairuiORCID,Tan Shengwang,Song HaiyingORCID,Liu ShibingORCID

Abstract

Natural structural colors inspire people to obtain the technology of spectral characteristics by designing and preparing micro-nano structures on the material’s surface. In this paper, the finite difference time domain (FDTD) method is used to simulate the spectral selectivity of micro-nano grating on an Au surface, and the spectral response characteristics of different physical parameters to the incident light are obtained. The results show that, when the grating depth is shallow, the absorption peaks of TM polarized incident light on the material surface take on redshifts with the increase in the grating period. Meanwhile, when the depth-width ratio of the grating structure is high, the absorption peak appears in the reflection spectrum and presents a linear red shift with the increase in the grating period after the linearly polarized light TE wave incident on the surface of the micro-nano structure. At the same time, the wavelength of the absorption peak of the reflection spectrum and the grating period take on one-to-one correspondence relations, and when the TM polarized light is incident, the reflection spectrum exhibits obvious selective absorption characteristic peaks at certain grating periods (for example, when the period is 0.4 μm, there are three absorption peaks at the wavelengths of 0.7, 0.95, and 1.55 μm). These simulation results can provide a good theoretical basis for the preparation of micro-nano structures with spectral regulation function in the practical application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference40 articles.

1. Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon;Hooke,1665

2. Opticks: Or, A Treatise of the Reflections, Refractions, Inflections and Colours of light. Based on the 4th ed. London, 1730;Newton,1952

3. Structural Colors in Nature and Butterfly-Wing Modeling

4. Radiative heat transfer between two dielectric nanogratings in the scattering approach

5. Angle-Independent Reflectors: Flexible, Angle-Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings (Adv. Mater. 18/2012)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3