Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects

Author:

Bystrov VladimirORCID,Paramonova Ekaterina,Avakyan LeonORCID,Coutinho José,Bulina NataliaORCID

Abstract

Simulation and computer studies of the structural and physical properties of hydroxyapatite (HAP) with different defects are presented in this review. HAP is a well-known material that is actively used in various fields of medicine, nanotechnology, and photocatalytic processes. However, all HAP samples have various defects and are still insufficiently studied. First of all, oxygen and OH group vacancies are important defects in HAP, which significantly affect its properties. The properties of HAP are also influenced by various substitutions of atoms in the HAP crystal lattice. The results of calculations by modern density functional theory methods of HAP structures with these different defects, primarily with oxygen and hydroxyl vacancies are analyzed in this review. The results obtained show that during the structural optimization of HAP with various defects, both the parameters of the crystallographic cells of the HAP change and the entire band structure of the HAP changes (changes in the band gap). This affects the electronic, optical, and elastic properties of HAP. The review considers the results of modeling and calculation of HAP containing various defects, the applied calculation methods, and the features of the effect of these defects on the properties of HAP, which is important for many practical applications.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference71 articles.

1. Biomaterials Science;Ratner,2013

2. Electrical functionalization and fabrication of nanostructured hydroxyapatite coatings;Bystrov,2019

3. Thin Calcium Phosphate Coatings for Medical Implants;Leon,2009

4. Physical Fundamentals of Biomaterials Surface Electrical Functionalization

5. Computational study of hydroxyapatite structures, properties and defects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3