Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance

Author:

Li Moyan,Liu Hongjin,Pang Shaozhi,Yan Pengwei,Liu Mingyang,Ding Minghui,Zhang Bin

Abstract

α-Fe2O3 fusiform nanorods were prepared by a simple hydrothermal method employing the mixture of FeCl3·6H2O and urea as raw materials. The samples were examined by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV–vis diffuse reflectance spectra (UV–DRS). Its visible-light photocatalytic performances were evaluated by photocatalytic decolorization methylene blue (MB) in visible light irradiation. It was found that pure phase α-Fe2O3 nanorods with a length of about 125 nm and a diameter of 50 nm were successfully synthesized. The photocatalytic decolorization of MB results indicated that α-Fe2O3 nanorods showed higher photocatalytic activity than that of commercial Fe2O3 nanoparticles—these are attributed to its unique three-dimensional structure and lower electron-hole recombination rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3