An Advanced Data Fusion Method to Improve Wetland Classification Using Multi-Source Remotely Sensed Data

Author:

Judah Aaron,Hu BaoxinORCID

Abstract

The goal of this research was to improve wetland classification by fully exploiting multi-source remotely sensed data. Three distinct classifiers were designed to distinguish individual or compound wetland categories using random forest (RF) classification. They were determined, in part, to best use the available remotely sensed features in order to maximize that information and to maximize classification accuracy. The results from these classifiers were integrated according to Dempster–Shafer theory (D–S theory). The developed method was tested on data collected from a study area in Northern Alberta, Canada. The data utilized were Landsat-8 and Sentinel-2 (multi-spectral), Sentinel-1 (synthetic aperture radar—SAR), and digital elevation model (DEM). Classification of fen, bog, marsh, swamps, and upland resulted in an overall accuracy of 0.93 using the proposed methodology, an improvement of 5% when compared to a traditional classification method based on the aggregated features from these data sources. It was noted that, with the traditional method, some pixels were misclassified with a high level of confidence (>85%). Such misclassification was significantly reduced (by ~10%) by the proposed method. Results also showed that some features important in separating compound wetland classes were not considered important using the traditional method based on the RF feature selection mechanism. When used in the proposed method, these features increased the classification accuracy, which demonstrated that the proposed method provided an effective means to fully employ available data to improve wetland classification.

Funder

NSERC

European Space Agency

Natural Resources Canada and the Government of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference84 articles.

1. Amphibian declines—Judging stability, persistence, and susceptibility of populations to local and global extinctions;Conserv. Biol.,1994

2. Dahl, T.E. (2000). Status and Trends of Wetlands in the Conterminous United States 1986 to 1997.

3. Remote sensing for wetland classification: A comprehensive review;Gisci. Remote Sens.,2018

4. U.S. Fish and Wildlife Service (2002). National Wetlands Inventory: A Strategy for the 21st Century.

5. Finlayson, C.M., and Davidson, N.C. (1999). Global Review of Wetland Resources and Priorities for Wetland Inventory: Summary Report, Supervising Scientist.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3