Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022

Author:

Ikard Scott J.1ORCID,Carroll Kenneth C.2ORCID,Rucker Dale F.3,Teeple Andrew P.1,Tsai Chia-Hsing2,Payne Jason D.1,Fuchs Erek H.4,Jamil Ahsan2

Affiliation:

1. U.S. Geological Survey, Oklahoma Texas Water Science Center, Austin, TX 78754, USA

2. College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003-8003, USA

3. hydroGEOPHYSICS, Inc., 3450 South Broadmont Drive, Tucson, AZ 85713, USA

4. Elephant Butte Irrigation District, 530 South Melendres Street, Las Cruces, NM 88005, USA

Abstract

Understanding the intermittent hydraulic connectivity between ephemeral streams and alluvial aquifers is a key challenge for managing water resources in arid environments. The lower Rio Grande flows for short, discontinuous periods during the irrigation season through the Mesilla Basin in southeastern New Mexico and southwestern Texas. Hydraulic connections between the Rio Grande and the Rio Grande alluvial aquifer in the Mesilla Basin vary spatially and temporally and are not well understood. Self-potential (SP) monitoring and time-lapse electric resistivity tomography (ERT) were therefore performed along linear cross-sections spanning the riverbed and flood plain for more than 4 months to monitor the transient hydraulic connection between the river and the alluvial aquifer by measuring time-lapse changes in the electric potential field in the riverbed and flood plain. The monitoring period began on 21 May 2022, when the riverbed was completely dry, continued through the irrigation season while streamflow was provided by reservoir releases from upstream dams, and ended on 4 October 2022, when the riverbed was again dry. SP monitoring data show (1) a background condition in the dry riverbed consisting of (a) a positive electric potential anomaly with a maximum amplitude of about +100 mV attributed predominantly to a subsurface vertical salt concentration gradient and (b) diurnal electric potential fluctuations with amplitudes of 40,000–90,000 mV attributed to near-surface heat conduction driven by weather variability, in addition to (2) a streaming potential anomaly during the irrigation season with a maximum amplitude of about −3500 mV whose transient behavior clearly exhibited a change from the background anomaly to depict exclusively losing streamflow conditions that persisted through the irrigation season. Time-lapse ERT monitoring results depict rapid infiltration of streamflow into the subsurface and imply the river and Rio Grande alluvial aquifer established a full hydraulic connection within a few hours after streamflow arrival at the monitoring site. SP monitoring data show an apparent transition from hydraulic connection to disconnection at the end of the irrigation season and indicate that the transitional phase between connection and disconnection may last substantially longer than the transition from disconnection to connection. The combination of SP and ERT monitoring demonstrated herein shows the potential for broader applications of time-lapse monitoring of hydraulic intermittency and near-surface heat fluxes in different rivers.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3