Construction of a Time-Variant Integrated Drought Index Based on the GAMLSS Approach and Copula Function

Author:

Bai Xia1,Jin Juliang12,Wu Chengguo12,Zhou Yuliang12ORCID,Zhang Libing12,Cui Yi12,Tong Fang1

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

2. Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

Construction of an integrated drought index is a fundamental task to conducting drought disaster risk management and developing drought resistance planning strategies. Given the evident non-consistent features during the drought evolution process, firstly, the GAMLSS approach was utilized to construct multiple combination scenarios of time-variant parameters and corresponding probability distribution functions. Then, the time-variant comprehensive drought index integrating the variable characteristics of precipitation and soil moisture was established by means of the copula function. Finally, the reliability of the time-variant comprehensive drought index was verified through its application in frequency analysis and return period determination of drought hazard system in Huaibei Plain, China. The application results demonstrated that: (1) The variation of the time-variant integrated drought indicator presented strong consistency with both soil moisture and precipitation during historical years in Huaibei Plain. (2) The overall variation of the drought hazard system characterized by drought duration and severity presented a gradual mitigation trend from west to east and north to south in Huaibei Plain, which agrees with the geographic differences and water resources availability distribution features. (3) Drought recognition results, including the frequency of drought events and typical drought processes with extreme grades, are in agreement with the practical statistics and observed data series. On the whole, the proposed time-variant integrated drought indicator is capable of extracting complex variation characteristics within the drought hazard evolution process, and can be further applied in drought monitoring, recognition and assessment research fields.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3