IWQP4Net: An Efficient Convolution Neural Network for Irrigation Water Quality Prediction

Author:

Al-Shourbaji Ibrahim1ORCID,Duraibi Salahaldeen1ORCID

Affiliation:

1. Department of Computer and Network Engineering, Jazan University, Jazan 45142, Saudi Arabia

Abstract

With the increasing worldwide population and the requirement for efficient approaches to farm care and irrigation, the demand for water is constantly rising, and water resources are becoming scarce. This has led to the development of smart water management systems that aim to improve the efficiency of water management. This paper pioneers an effective Irrigation Water Quality Prediction (IWQP) model using a convolution neural architecture that can be trained on any general computing device. The developed IWQP4Net is assessed using several evaluation measurements and compared to the Logistic Regression (LR), Support Vector regression (SVR), and k-Nearest Neighbor (kNN) models. The results show that the developed IWQP4Net achieved a promising outcome and better performance than the other comparative models.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart irrigation system using IoT and machine learning methods;2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3