Transfer-Learning-Based Temperature Uncertainty Reduction Algorithm for Large Scale Oil Tank Ground Settlement Monitoring

Author:

Liu Tao1,Jiang Tao1,Liu Gang1,Sun Changsen1

Affiliation:

1. College of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China

Abstract

Sensors operating in open-air environments can be affected by various environmental factors. Specifically, ground settlement (GS) monitoring sensors installed in oil tanks are susceptible to non-uniform temperature fields caused by uneven sunshine exposure. This disparity in environmental conditions can lead to errors in sensor readings. To address this issue, this study aimed to analyze the impact of temperature on GS monitoring sensors and establish a mapping relationship between temperature uncertainty (fluctuations of measurement caused by temperature variation) and temperature variation. By collecting the temperature information and inferring the temperature uncertainty being introduced, this interference can be removed. However, it is crucial to note that in real-world complex scenarios, the relationship between temperature uncertainty and temperature variation is not always a constant positive correlation, which limits the data available for certain periods. Moreover, the limited availability of data presents a challenge when analyzing the complex mapping relationship. To overcome these challenges, a transfer-learning-based algorithm was introduced to develop a more accurate model for predicting temperature uncertainty based on temperature variation, even with limited data. Subsequently, a practical test was conducted to validate the proposed algorithm’s performance. The results demonstrated that the algorithm outperformed a simple linear fitting model using the least squares method (LSM), achieving an improvement of up to 21.9%. This outcome highlights the algorithm’s potential for enhancing the performance of GS sensors in daytime monitoring and contributing to the safe operation of oil tank facilities and infrastructure health monitoring.

Funder

China Liaoning Port Group Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3