Developing an Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and Horizontal Struts

Author:

Alwattar Tahseen A.,Mian AhsanORCID

Abstract

In this study, a body-centered cubic (BCC) lattice unit cell occupied inside a frame structure to create a so-called “InsideBCC” is considered. The equivalent quasi-isotropic properties required to describe the material behavior of the InsideBCC unit cell are equivalent Young’s modulus ( E e ) , equivalent shear modulus ( G e ) , and equivalent Poisson’s ratio ( ν e ) . The finite element analysis (FEA) based computational approach is used to simulate and calculate the mechanical responses of InsideBCC unit cell, which are the mechanical responses of the equivalent solid. Two separates finite element models are then developed for samples under compression: one with a 6 × 6 × 4 cell InsideBCC lattice cell structure (LCS) and one completely solid with equivalent solid properties obtained from a unit cell model. In addition, 6 × 6 × 4 cell specimens are fabricated on a fused deposition modeling (FDM) uPrint SEplus 3D printer using acrylonitrile butadiene styrene (ABS) material and tested experimentally under quasi-static compression load. Then, the results extracted from the finite element simulation of both the entire lattice and the equivalent solid models are compared with the experimental data. A good agreement between the experimental stress–strain behavior and that obtained from the FEA models is observed within the linear elastic limit.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3