Validating a Consumer Smartwatch for Nocturnal Respiratory Rate Measurements in Sleep Monitoring

Author:

Jung Hyunjun1ORCID,Kim Dongyeop2,Choi Jongmin1,Joo Eun Yeon3ORCID

Affiliation:

1. Samsung Electronics, Suwon 16677, Republic of Korea

2. Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea

3. Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

Abstract

Wrist-based respiratory rate (RR) measurement during sleep faces accuracy limitations. This study aimed to assess the accuracy of the RR estimation function during sleep based on the severity of obstructive sleep apnea (OSA) using the Samsung Galaxy Watch (GW) series. These watches are equipped with accelerometers and photoplethysmography sensors for RR estimation. A total of 195 participants visiting our sleep clinic underwent overnight polysomnography while wearing the GW, and the RR estimated by the GW was compared with the reference RR obtained from the nasal thermocouple. For all participants, the root mean squared error (RMSE) of the average overnight RR and continuous RR measurements were 1.13 bpm and 1.62 bpm, respectively, showing a small bias of 0.39 bpm and 0.37 bpm, respectively. The Bland–Altman plots indicated good agreement in the RR measurements for the normal, mild, and moderate OSA groups. In participants with normal-to-moderate OSA, both average overnight RR and continuous RR measurements achieved accuracy rates exceeding 90%. However, for patients with severe OSA, these accuracy rates decreased to 79.45% and 75.8%, respectively. The study demonstrates the GW’s ability to accurately estimate RR during sleep, even though accuracy may be compromised in patients with severe OSA.

Funder

Samsung Medical Center

Samsung Electronics

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Low-Cost Respiratory Rate Measurement Device;Arabian Journal for Science and Engineering;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3