Abstract
Thin films with nanometer thicknesses in the range 100–400 nm are prepared from double hydrophilic copolymers of complex branched structures containing poly(N,N-dimethyl acrylamide) and poly(ethylene oxide) blocks and are used as humidity sensitive media. Instead of using glass or opaque wafer for substrates, polymer thin films are deposited on Bragg stacks and thin (30 nm) sputtered Au–Pd films thus bringing color for the colorless polymer/glass system and enabling transmittance measurements for humidity sensing. All samples are characterized by transmittance measurements at different humidity levels in the range from 5% to 90% relative humidity. Additionally, the humidity induced color change is studied by calculating the color coordinates at different relative humidity using measured spectra of transmittance or reflectance. A special attention is paid to the selection of wavelength(s) of measurements and discriminating between different humidity levels when sensing is performed by measuring transmittance at fixed wavelengths. The influence of initial film thickness, sensor architecture, and measuring configuration on sensitivity is studied. The potential and advantages of using top covered Bragg stacks and polymer/metal thin film structures as humidity sensors with simple optical read-outs are demonstrated and discussed.
Subject
General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献