Abstract
Secondary phases are common in Cu2ZnSnS4 (CZTS) thin films, which can be fatal to the performance of solar cell devices fabricated from this material. They are difficult to detect by X-Ray diffraction (XRD) because of the weak peak in spectra compared with the CZTS layer. Herein, it was found that in-depth elemental distribution by a secondary ion mass spectroscopy method illustrated uniform film composition in the bulk with slight fluctuation between different grains. X-ray photoelectron spectroscopy (XPS) measurement was conducted after sputtering the layer with different depths. An Auger electron spectrum with Auger parameter were used to check the chemical states of elements and examine the distribution of secondary phases in the CZTS films. Secondary phases of CuS, ZnS and SnS were detected at the surface of the CZTS film within a 50-nm thickness while no secondary phases were discovered in the bulk. The solar cell fabricated with the as-grown CZTS films showed a conversion efficiency of 2.1% (Voc: 514.3 mV, Jsc: 10.4 mA/cm2, FF: 39.3%) with an area of 0.2 cm2 under a 100 mW/cm2 illumination. After a 50-nm sputtering on the CZTS film, the conversion efficiency of the solar cell was improved to 6.2% (Voc: 634.0 mV, Jsc: 17.3 mA/cm2, FF: 56.9%).
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献