Abstract
In this paper, we report a complete solution for enhanced sludge treatment involving the removal of toxic metal (Cu(II)) from waste waters, subsequent pyrolytic conversion of these sludge to Cu-doped porous carbon, and their application in energy storage systems. The morphology, composition, and pore structure of the resultant Cu-doped porous carbon could be readily modulated by varying the flocculation capacity of Cu(II). The results demonstrated that it exhibited outstanding performance for supercapacitor electrode applications. The Cu(II) removal efficiency has been evaluated and compared to the possible energy benefits. The flocculant dosage up to 200 mg·L−1 was an equilibrium point existing between environmental impact and energy, at which more than 99% Cu(II) removal efficiency was achieved, while the resulting annealed product showed a high specific capacity (389.9·F·g−1 at 1·A·g−1) and good cycling stability (4% loss after 2500 cycles) as an electrode material for supercapacitors.
Funder
National Natural Science Foundation of China
International Scientific and Technological Cooperation Project of Xinjiang Bingtuan
Subject
General Materials Science,General Chemical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献