Eco-Friendly Preparation of Carbon-Bonded Carbon Fiber Based on Glucose-Polyacrylamide Hydrogel Derived Carbon as Binder

Author:

Zeng Chen1,Gu Yanju1,Xie You1,Hu Weiqin1,Huang Min1,Liao Gen1,Yang Jianxiao1ORCID,Fan Zheqiong2,Tan Ruixuan1

Affiliation:

1. Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China

2. School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Lightweight, high-temperature-resistant carbon-bonded carbon fiber (CBCF) composites with excellent thermal insulation properties are desirable materials for thermal protection systems in military and aerospace applications. Here, glucose was introduced into the polyacrylamide hydrogel to form the glucose-polyacrylamide (Glu-PAM) hydrogel. The CBCF composites were prepared using the Glu-PAM hydrogel as a brand-new binder, and the synergistic effect between glucose and acrylamide was investigated. The results showed the Glu-PAM hydrogel could limit the foaming of glucose and enhance the carbon yield of glucose. Meanwhile, the dopamine-modified chopped carbon fiber could be uniformly mixed by high-speed shearing to form a slurry with the Glu-PAM hydrogel. Finally, the slurry was successfully extruded and molded to prepare CBCF composites with a density of 0.158~0.390 g cm−3 and excellent thermal insulation performance and good mechanical properties. The compressive strength of CBCF composites with a density of 0.158 g cm−3 in the Z direction is 0.18 MPa, and the thermal conductivity in the Z direction at 25 °C and 1200 °C is 0.10 W m−1 k−1 and 0.20 W m−1 k−1, respectively. This study provided an efficient, environment-friendly, and cost-effective strategy for the preparation of CBCF composites.

Funder

Natural Science Foundation for Young Scientists of China

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3