CeO2 Nanoparticles-Regulated Plasmid Uptake and Bioavailability for Reducing Transformation of Extracellular Antibiotic Resistance Genes

Author:

Xu Yinuo12,Du Hao12,Wang Chuanxi12,Yue Le12,Chen Feiran12,Wang Zhenyu123

Affiliation:

1. Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China

2. Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China

3. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China

Abstract

The direct uptake of extracellular DNA (eDNA) via transformation facilitates the dissemination of antibiotic resistance genes (ARGs) in the environment. CeO2 nanoparticles (NPs) have potential in the regulation of conjugation-dominated ARGs propagation, whereas their effects on ARGs transformation remain largely unknown. Here, CeO2 NPs at concentrations lower than 50 mg L−1 have been applied to regulate the transformation of plasmid-borne ARGs to competent Escherichia coli (E. coli) cells. Three types of exposure systems were established to optimize the regulation efficiency. Pre-incubation of competent E. coli cells with CeO2 NPs at 0.5 mg L−1 inhibited the transformation (35.4%) by reducing the ROS content (0.9-fold) and cell membrane permeability (0.9-fold), thereby down-regulating the expression of genes related to DNA uptake and processing (bhsA, ybaV, and nfsB, 0.7–0.8 folds). Importantly, CeO2 NPs exhibited an excellent binding capacity with the plasmids, decreasing the amounts of plasmids available for cellular uptake and down-regulating the gene expression of DNA uptake (bhsA, ybaV, and recJ, 0.6–0.7 folds). Altogether, pre-exposure of plasmids with CeO2 NPs (10 and 25 mg L−1) suppressed the transformation with an efficiency of 44.5–51.6%. This study provides a nano-strategy for controlling the transformation of ARGs, improving our understanding on the mechanisms of nanomaterial-mediated ARGs propagation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3