Preparation and Thermal Conductivity Enhancement of Boron Nitride Nano-Material PiG Composite

Author:

Chen Zhenhua1,Wei Qinhua1,Tang Gao1,Shi Hongsheng2,Qin Laishun1

Affiliation:

1. College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China

2. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

With the improvement of the conversion efficiency of LED chip and fluorescent material and the increasing demand for high-brightness light sources, LED technology has begun to move toward the direction of high-power. However, there is a huge problem that high-power LED must face with a large amount of heat generated by high power causing a high temperature thermal decay or even thermal quenching of the fluorescent material in the device, resulting in a reduction of the luminous efficiency, color coordinates, color rendering index, light uniformity, and service life of LED. In order to solve this problem, fluorescent materials with high thermal stability and better heat dissipation were prepared to enhance their performance in high-power LED environments. A variety of boron nitride nanomaterials were prepared by the solid phase-gas phase method. By adjusting the ratio of boric acid to urea in the raw material, different BN nanoparticles and nanosheets were obtained. Moreover, the control of catalyst amount and synthesis temperature can be used to synthesize boron nitride nanotubes with various morphologies. By adding different morphologies and quantities of BN material in PiG (phosphor in glass), the mechanical strength, heat dissipation, and luminescent properties of the sheet can be effectively controlled. PiG prepared by adding the right number of nanotubes and nanosheets has higher quantum efficiency and better heat dissipation after being excited by high power LED.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3