A Study on the Effect of Doping Metallic Nanoparticles on Fracture Properties of Polylactic Acid Nanofibres via Molecular Dynamics Simulation

Author:

Izadi Razie1ORCID,Trovalusci Patrizia1ORCID,Fantuzzi Nicholas2ORCID

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Gramsci 53, 00197 Rome, Italy

2. Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy

Abstract

All-atom molecular dynamics simulations are conducted to elucidate the fracture mechanism of polylactic acid nanofibres doped with metallic nanoparticles. Extensional deformation is applied on polymer nanofibres decorated with spherical silver nanoparticles on the surface layer. In the obtained stress–strain curve, the elastic, yield, strain softening and fracture regions are recognized, where mechanical parameters are evaluated by tracking the stress, strain energy and geometrical evolutions. The energy release rate during crack propagation, which is a crucial factor in fracture mechanics, is calculated. The results show that the presence of doping nanoparticles improves the fracture properties of the polymer nanofibre consistently with experimental observation. The nanoparticles bind together polymer chains on the surface layer, which hinders crack initiation and propagation. The effect of the distribution of nanoparticles is studied through different doping decorations. Additionally, a discussion on the variation of internal energy components during uniaxial tensile loading is provided to unravel the deformation mechanism of nanoparticle-doped nanofibres.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference70 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3