Assimilation of Nanoparticles of SiC, ZrC, and WC with Polyaryletherketone for Performance Augmentation of Adhesives

Author:

Marathe Umesh1,Bijwe Jayashree1

Affiliation:

1. Centre for Automotive Research and Tribology (CART) (Formerly ITMMEC), Indian Institute of Technology, New Delhi 110016, India

Abstract

The present paper reports the analyses of results obtained from experiments carried out to explore the challenge of homogeneous, uniform, and deagglomerated dispersion of ultra-heavy nanoparticles (NPs) in the high-performance polyaryletherketone (PAEK) matrix. An equal and fixed amount of (0.5 vol. %) NPs of silicon carbide (SiC), zirconium carbide (ZrC), and tungsten carbide (WC) were dispersed in a PAEK matrix and compression molded to develop three different nanocomposites. Simultaneously, nano-adhesives of the same composition were also developed to join the stainless steel adherends. The composites and adhesives were characterized for their physical, thermal, thermo-mechanical, thermal conductivity (TC), and lap shear strength (LSS) behavior. It was observed that SiC NPs performed significantly better than ZrC and WC NCs in all performance properties (LSS: 154%, TC: 263%, tensile strength: 21%). Thermal conductivity (TC) and tensile properties were validated using various predictive models, such as the rule of mixture parallel model, the Chiew and Glandt model, and the Lewis model. Scanning electron micrographs were used for the morphological analysis of LSS samples to detect macro- and micro-failure. Micrographs showed evidence of micro-striation and plastic deformation as a micromodel, as well as mixed failure, i.e., adhesive–cohesive as a macro-failure mode.

Funder

Council of Scientific and Industrial Research (CSIR), New Delhi, India

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3