Affiliation:
1. Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
2. Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Abstract
In this work, polyethyleneimine-grafted graphene oxide (PEI/GO) is synthesized using graphene, polyethyleneimine, and trimesoyl chloride. Both graphene oxide and PEI/GO are characterized by a Fourier-transform infrared (FTIR) spectrometer, a scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Characterization results confirm that polyethyleneimine is uniformly grafted on the graphene oxide nanosheets and, thus, also confirm the successful synthesis of PEI/GO. PEI/GO adsorbent is then evaluated for the removal of lead (Pb2+) from aqueous solutions, and the optimum adsorption is attained at pH 6, contact time of 120 min, and PEI/GO dose of 0.1 g. While chemosorption is dominating at low Pb2+ concentrations, physisorption is dominating at high concentrations and the adsorption rate is controlled by the boundary-layer diffusion step. In addition, the isotherm study confirms the strong interaction between Pb2+ ions and PEI/GO and reveals that the adsorption process obeys well the Freundlich isotherm model (R2 = 0.9932) and the maximum adsorption capacity (qm) is 64.94 mg/g, which is quite high compared to some of the reported adsorbents. Furthermore, the thermodynamic study confirms the spontaneity (negative ΔG° and positive ΔS°) and the endothermic nature (ΔH° = 19.73 kJ/mol) of the adsorption process. The prepared adsorbent (PEI/GO) offers a potential promise for wastewater treatment because of its fast and high uptake removal capacity and could be used as an effective adsorbent for the removal of Pb2+-ions and other heavy metals from industrial wastewater.
Funder
the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
Subject
General Materials Science,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献