Effects of Nano-CeO2 on Microstructure and Properties of WC/FeCoNiCrMo0.2 Composite High Entropy Alloy Coatings by Laser Cladding

Author:

Ren Xiangyu1,Sun Wenlei1,Sheng Zefeng1,Liu Minying1,Hui Hujing1,Xiao Yi1

Affiliation:

1. College of Mechanical Engineering, Xinjiang University, Wulumuqi 830047, China

Abstract

FeCoNiCrMo0.2 high entropy alloy has many excellent properties, such as high strength, high wear resistance, high corrosion resistance, and high ductility. To further improve the properties of this coating, FeCoNiCrMo high entropy alloy (HEA) coatings, and two composite coatings, FeCoNiCrMo0.2 + WC and FeCoNiCrMo0.2 + WC + CeO2, were prepared on the surface of 316L stainless steel by laser cladding technology. After adding WC ceramic powder and CeO2 rare earth control, the microstructure, hardness, wear resistance, and corrosion resistance of the three coatings were carefully studied. The results show that WC powder significantly improved the hardness of the HEA coating and reduced the friction factor. The FeCoNiCrMo0.2 + 32%WC coating showed excellent mechanical properties, but the distribution of hard phase particles in the coating microstructure was uneven, resulting in unstable distribution of hardness and wear resistance in each region of the coating. After adding 2% nano-CeO2 rare earth oxide, although the hardness and friction factor decreased slightly compared with the FeCoNiCrMo0.2 + 32%WC coating, the coating grain structure was finer, which reduced the porosity and crack sensitivity of the coating, and the phase composition of the coating did not change; there was a uniform hardness distribution, a more stable friction coefficient, and the flattest wear morphology. In addition, under the same corrosive environment, the value of polarization impedance of the FeCoNiCrMo0.2 + 32%WC + 2%CeO2 coating was greater, the corrosion rate was relatively low, and the corrosion resistance was better. Therefore, based on various indexes, the FeCoNiCrMo0.2 + 32%WC + 2%CeO2 coating has the best comprehensive performance and can extend the service life of 316L workpieces.

Funder

Wenlei Sun

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3