Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery

Author:

Ha Seongmin1,Jeong Seo Gyeong1,Lim Chaehun1,Min Chung Gi1,Lee Young-Seak12ORCID

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

2. Institute of Carbon Fusion Technology (InCFT), Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

In this study, multi-walled carbon nanotubes (MWCNTs) were modified by thermal fluorination to improve dispersibility between MWCNTs and Li4Ti5O12 (LTO) and were used as additives to compensate for the disadvantages of LTO anode materials with low electronic conductivity. The degree of fluorination of the MWCNTs was controlled by modifying the reaction time at constant fluorination temperature; the clear structure and surface functional group changes in the MWCNTs due to the degree of fluorination were determined. In addition, the homogeneous dispersion in the LTO was improved due to the strong electronegativity of fluorine. The F-MWCNT conductive additive was shown to exhibit an excellent electrochemical performance as an anode for lithium ion batteries (LIBs). In particular, the optimized LTO with added fluorinated MWCNTs not only exhibited a high specific capacity of 104.8 mAh g−1 at 15.0 C but also maintained a capacity of ~116.8 mAh g−1 at a high rate of 10.0 C, showing a capacity almost 1.4 times higher than that of LTO with the addition of pristine MWCNTs and an improvement in the electrical conductivity. These results can be ascribed to the fact that the semi-ionic C–F bond of the fluorinated MWCNTs reacts with the Li metal during the charge/discharge process to form LiF, and the fluorinated MWCNTs are converted into MWCNTs to increase the conductivity due to the bridge effect of the conductive additive, carbon black, with LTO.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3