Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles

Author:

Jalali-Mousavi Maryam1,Cheng Samuel Kok Suen1,Sheng Jian1ORCID

Affiliation:

1. College of Engineering, Texas A&M University–Corpus Christi, Corpus Christi, TX 78412, USA

Abstract

Synthesis of a smooth conductive film over an elastomer is vital to the development of flexible optics and wearable electronics, but applications are hindered by wrinkles and cracks in the film. To date, a large-scale wrinkle-free film in an elastomer has yet to be achieved. We present a robust method to fabricate wrinkle-free, stress-free, and optically smooth thin film in elastomer. Targeting underlying mechanisms, we applied nanoparticles between the film and elastomer to jam the interface and subsequently suppress interfacial instabilities to prevent the formation of wrinkles. Using polydimethylsiloxane (PDMS) and parylene-C as a model system, we have synthesized large-scale (>10 cm) wrinkle-free Al film over/in PDMS and demonstrated the principle of interface jamming by nanoparticles. We varied the jammer layer thickness to show that, as the layer exceeds a critical thickness (e.g., 150 nm), wrinkles are successfully suppressed. Nano-indentation experiments revealed that the interface becomes more elastic and less viscoelastic with respect to the jammer thickness, which further supports our assertion of the wrinkle suppression mechanism. Since the film was embedded in a polymer matrix, the resultant film was highly deformable, elastic, and optically smooth with applications for deformable optical sensors and actuators.

Funder

Gulf of Mexico Research Initiative

ARO

ONR

Cancer Prevention Research Institute for Texas

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3