Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes

Author:

Genç Aziz1ORCID,Patarroyo Javier1ORCID,Sancho-Parramon Jordi2,Arenal Raul345ORCID,Bastús Neus G.1ORCID,Puntes Victor167,Arbiol Jordi17ORCID

Affiliation:

1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus Universitat Autònoma de Barcelona, 08193 Barcelona, Spain

2. Rudjer Boskovic Institute, 10000 Zagreb, Croatia

3. Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U de Zaragoza, 50009 Zaragoza, Spain

4. Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain

5. ARAID Foundation, 50018 Zaragoza, Spain

6. Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain

7. ICREA, 08010 Barcelona, Spain

Abstract

Morphological control at the nanoscale paves the way to fabricate nanostructures with desired plasmonic properties. In this study, we discuss the nanoengineering of plasmon resonances in 1D hollow nanostructures of two different AuAg nanotubes, including completely hollow nanotubes and hybrid nanotubes with solid Ag and hollow AuAg segments. Spatially resolved plasmon mapping by electron energy loss spectroscopy (EELS) revealed the presence of high order resonator-like modes and localized surface plasmon resonance (LSPR) modes in both nanotubes. The experimental findings accurately correlated with the boundary element method (BEM) simulations. Both experiments and simulations revealed that the plasmon resonances are intensely present inside the nanotubes due to plasmon hybridization. Based on the experimental and simulated results, we show that the novel hybrid AuAg nanotubes possess two significant coexisting features: (i) LSPRs are distinctively generated from the hollow and solid parts of the hybrid AuAg nanotube, which creates a way to control a broad range of plasmon resonances with one single nanostructure, and (ii) the periodicity of the high-order modes are disrupted due to the plasmon hybridization by the interaction of solid and hollow parts, resulting in an asymmetrical plasmon distribution in 1D nanostructures. The asymmetry could be modulated/engineered to control the coded plasmonic nanotubes.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3