Strain Measurement in Single Crystals by 4D-ED

Author:

Lábár János L.1ORCID,Pécz Béla1ORCID,van Waveren Aiken2,Hallais Géraldine2ORCID,Desvignes Léonard2,Chiodi Francesca2

Affiliation:

1. Thin Film Physics Laboratory, Institute of Technical Physics and Materials Science, Centre of Energy Research, Konkoly Thege M. u. 29-33, H-1121 Budapest, Hungary

2. Centre de Nanosciences et de Nanotechnologies—C2N, Université Paris-Saclay, CNRS, 91120 Palaiseau, France

Abstract

A new method is presented to measure strain over a large area of a single crystal. The 4D-ED data are collected by recording a 2D diffraction pattern at each position in the 2D area of the TEM lamella scanned by the electron beam of STEM. Data processing is completed with a new computer program (available free of charge) that runs under the Windows operating system. Previously published similar methods are either commercial or need special hardware (electron holography) or are based on HRTEM, which involves limitations with respect to the size of the field of view. All these limitations are overcome by our approach. The presence of defects results in small local changes in orientation that change the subset of experimentally available diffraction spots in the individual patterns. Our method is based on a new principle, namely fitting a lattice to (a subset of) measured diffraction spots to improve the precision of the measurement. Although a spot to be measured may be missing in some of the patterns even the missing spot can be precisely measured by the lattice determined from the available spots. Application is exemplified by heavily boron-doped silicon with intended usage as a low-temperature superconductor in qubits.

Funder

National Research, Development, and Innovation Office

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3