Design and Analysis of Gallium Arsenide-Based Nanowire Using Coupled Non-Equilibrium Green Function for RF Hybrid Applications

Author:

Paramasivam Pattunnarajam1,Gowthaman Naveenbalaji2,Srivastava Viranjay M.2ORCID

Affiliation:

1. Electronics and Communication Engineering, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai 600127, India

2. Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

This research work uses sp3d5s* tight-binding models to design and analyze the structural properties of group IV and III-V oriented, rectangular Silicon (Si) and Gallium Arsenide (GaAs) Nanowires (NWs). The electrical characteristics of the NWs, which are shielded with Lanthanum Oxide (La2O3) material and the orientation with z [001] using the Non-Equilibrium Green Function (NEGF) method, have been analyzed. The electrical characteristics and the parameters for the multi-gate nanowires have been realized. A nanowire comprises a heavily doped n+ donor source and drains doping and n-donor doping at the channel. The specified nanowire has a gate length and channel length of 15 nm each, a source-drain device length LSD = 35 nm, with La2O3 as 1 nm (gate dielectric oxide) each on the top and bottom of the core material (Si/GaAs). The Gate-All-Around (GAA) Si NW is superior with a high (ION/IOFF ratio) of 1.06 × 109, and a low leakage current, or OFF current (IOFF), of 3.84 × 10−14 A. The measured values of the mid-channel conduction band energy (Ec) and charge carrier density (ρ) at VG = VD = 0.5 V are −0.309 eV and 6.24 × 1023 C/cm3, respectively. The nanowires with hydrostatic strain have been determined by electrostatic integrity and increased mobility, making them a leading solution for upcoming technological nodes. The transverse dimensions of the rectangular nanowires with similar energy levels are realized and comparisons between Si and GaAs NWs have been performed.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical Modeling of [001] Orientation in Silicon Trigate Rectangular Nanowire Using a Tight-Binding Model;Silicon;2024-02-02

2. Self-consistent Analysis for Optimization of AlGaAs/GaAs Based Heterostructure;Journal of Electrical Engineering & Technology;2023-12-11

3. Implementing TANAGRA for the Visualization and Analytical Interpretation of E-commerce Datasets;2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI);2023-11-23

4. Formation of oxide islands on the p-type gallium arsenide surface by electrochemical etching;2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2023-11-13

5. Deep learning neural network for approaching Schrödinger problems with arbitrary two-dimensional confinement;Machine Learning: Science and Technology;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3