One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application

Author:

Lin Chung-Kwei12ORCID,Chiou Yuh-Jing3ORCID,Tsou Sheng-Jung3,Chung Chih-Yi3,Chao Chen-Chun3,Yang Ruey-Bing4

Affiliation:

1. Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan

2. School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan

3. Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan

4. Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 407, Taiwan

Abstract

The one-pot process, which combines the polymerization of polyaniline (i.e., PANI) with subsequent reduction of iron nanowire (i.e., Fe NW) under a magnetic field, was developed to produce Fe@PANI core–shell nanowires. The synthesized nanowires with various PANI additions (0–30 wt.%) were characterized and used as microwave absorbers. Epoxy composites with 10 wt.% absorbers were prepared and examined using the coaxial method to reveal their microwave absorbing performance. Experimental results showed that the Fe NWs with PANI additions (0–30 wt.%) had average diameters ranging from 124.72 to 309.73 nm. As PANI addition increases, the α-Fe phase content and the grain size decrease, while the specific surface area increases. The nanowire-added composites exhibited superior microwave absorption performance with wide effective absorption bandwidths. Among them, Fe@PANI-90/10 exhibits the best overall microwave absorption performance. With a thickness of 2.3 mm, effective absorption bandwidth was the widest and reached 3.73 GHz, ranging from 9.73 to 13.46 GHz. Whereas with a thickness of 5.4 mm, Fe@PANI-90/10 reached the best reflection loss of −31.87 dB at 4.53 GHz.

Funder

Taiwan National Science and Technology Council

Tatung University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3