The Extraction of Terrestrial Water Storage Anomaly from GRACE in the Region with Medium Scale and Adjacent Weak Signal Area: A Case for the Dnieper River Basin

Author:

Zhang Tao1ORCID,Bian Shaofeng1,Ji Bing1,Li Wanqiu2,Zong Jingwen3,Yuan Jiajia4

Affiliation:

1. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

2. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

3. Naval Submarine Academy, Qingdao 266000, China

4. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The accuracy of estimating changes in terrestrial water storage (TWS) using Gravity Recovery and Climate Experiment (GRACE) level-2 products is limited by the leakage effect resulting from post-processing and the weak signal magnitude in adjacent areas. The TWS anomaly from 2003 to 2016 in the Dnieper River basin, with characteristics of medium scale and an adjacent weak TWS anomaly area, are estimated in this work. Two categories of leakage error repair approaches (including forward modeling, data-driven, single, and multiple scaling factor approaches) are employed. Root mean square error (RMSE) and Nash–Sutcliffe Efficiency (NSE) are used to evaluate the efficiency of approaches. The TWS anomaly inverted by the forward modeling approach (FM) is more accurate in terms of RMSE 3.04 and NSE 0.796. We compared single and multiple scaling approaches for the TWS anomaly and found that leakage signals mostly come from semi-annual terms. From the recovered results demonstrated in the spatial domain, the South of Dnieper River basin is more sensitive to the leakage effect because of it is adjacent to a weak hydrological signal region near the Black Sea. Further, comprehensive climate insights and physical mechanisms behind the TWS anomaly were confirmed. The temperate continental climate of this river basin is shown according to the variation in TWS anomaly in the spatial domain. Snowmelt plays a significant role in the TWS anomaly of the Dnieper River basin, following the precipitation record and the 14-year temperature spatial distribution for February. We compared single and multiple scaling approaches for the TWS anomaly and found that leakage signals mostly come from semi-annual terms.

Funder

National Natural Science Foundation of China

Shandong Province Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3