Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach

Author:

Zhang Ruipeng1ORCID,Feng Yanxiang1,Yang Yikang1,Li Xiaoling2,Li Hengnian3

Affiliation:

1. School of Electronic and Information Engineering, Xi’an Jiao Tong University, Xi’an 710049, China

2. School of Electronic and Control Engineering, Chang’an University, Xi’an 710049, China

3. State Key Laboratory of Astronautic Dynamics, China Xi’an Satellite Control Center, Xi’an 710049, China

Abstract

Satellite edge computing (SEC) plays an increasing role in earth observation, due to its global coverage and low-latency computing service. In SEC, it is pivotal to offload diverse observation-data-processing tasks to the appropriate satellites. Nevertheless, due to the sparse intersatellite link (ISL) connections, it is hard to gather complete information from all satellites. Moreover, the dynamic arriving tasks will also influence the obtained offloading assignment. Therefore, one daunting challenge in SEC is achieving optimal offloading assignments with consideration of the dynamic delay-sensitive tasks. In this paper, we formulate task offloading in SEC with delay-sensitive tasks as a mixed-integer linear programming problem, aiming to minimize the weighted sum of deadline violations and energy consumption. Due to the limited ISLs, we propose a fully-decentralized method, called the PI-based task offloading (PITO) algorithm. The PITO operates on each satellite in parallel and only relies on local communication via ISLs. Tasks can be directly offloaded on board without depending on any central server. To further handle the dynamic arriving tasks, we propose a re-offloading mechanism based on the match-up strategy, which reduces the tasks involved and avoids unnecessary insertion attempts by pruning. Finally, extensive experiments demonstrate that PITO outperforms state-of-the-art algorithms when solving task offloading in SEC, and the proposed re-offloading mechanism is significantly more efficient than existing methods.

Funder

Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence”

National Natural Science Foundation of P.R. China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3