Affiliation:
1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
For two-dimensional forward-looking sonar imaging, high sidelobes significantly degrade the quality of sonar images. The cosine window function weighting method is often applied to suppress the sidelobe levels in the angular and range dimensions, at the expense of the main lobe resolutions. Therefore, an improved spatially variant apodization imaging method for forward-looking sonar is proposed, to reduce sidelobes without degrading the main lobe resolution in angular-range dimensions. The proposed method is a nonlinear postprocessing operation in which the raw complex-valued sonar image produced by a conventional beamformer and matched filter is weighted by a spatially variant coefficient. To enhance the robustness of the spatially variant apodization approach, the array magnitude and phase errors are calibrated to prevent the occurrence of beam sidelobe increase prior to beamforming operations. The analyzed results of numerical simulations and a lake experiment demonstrate that the proposed method can greatly reduce the sidelobes to approximately −40 dB, while the main lobe width remains unchanged. Moreover, this method has an extremely simple computational process.
Funder
IACAS Frontier Exploration Project
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two Dimensional Sidelobes Reduction in SAR System;2024 14th International Conference on Electrical Engineering (ICEENG);2024-05-21