Detection and Type Recognition of SAR Artificial Modulation Targets Based on Multi-Scale Amplitude-Phase Features

Author:

Meng Weize1ORCID,Cai Zhihao1ORCID,Fang Fuping1,Feng Dejun1,Wang Jinrong1,Xing Shiqi1,Quan Sinong1ORCID

Affiliation:

1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

With respect to the detection and recognition of an Artificial Modulation Target (AMT) with different modulated types, the state-of-the-art methods generally suffer the deficiencies of overfitting and insufficient generalization of existing neural network solutions. To address these problems, this paper proposes a multi-scale amplitude-phase feature discrimination method for AMTs in SAR images. First, a multi-type modulated AMT Dataset is generated (AMT Detection and Modulation Type Recognition Dataset, ADMTR Dataset), wherein the factors of jamming position, jamming-to-signal ratio (JSR), and the modulated parameter are considered to enhance the generalization. Second, a Multi-Input Multi-Output Fusion Wavelet Neural Network (MIMOFWTNN) is established, which not only uses the amplitude information of the scene but also adequately makes use of the phase and high-frequency information. This empowers us to detect the AMT in a higher dimensional feature space such that the type recognition can be implemented with more certainty. Analysis and discussions conducted on comparison experiments and ablation experiments demonstrate that the proposed network can achieve an average accuracy of 96.96% on the cross-validation set and a correct rate of 99.0% on the completely independent test set, which outperforms the compared methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3