Effective Training and Inference Strategies for Point Classification in LiDAR Scenes

Author:

Carós Mariona1ORCID,Just Ariadna2,Seguí Santi1ORCID,Vitrià Jordi1ORCID

Affiliation:

1. Department of Mathematics and Computer Science, Universitat de Barcelona (UB), Gran Via Corts Catalanes, 585, 08007 Barcelona, Spain

2. Cartographic and Geological Institute of Catalonia, Montjuïc Park, 08038 Barcelona, Spain

Abstract

Light Detection and Ranging systems serve as robust tools for creating three-dimensional representations of the Earth’s surface. These representations are known as point clouds. Point cloud scene segmentation is essential in a range of applications aimed at understanding the environment, such as infrastructure planning and monitoring. However, automating this process can result in notable challenges due to variable point density across scenes, ambiguous object shapes, and substantial class imbalances. Consequently, manual intervention remains prevalent in point classification, allowing researchers to address these complexities. In this work, we study the elements contributing to the automatic semantic segmentation process with deep learning, conducting empirical evaluations on a self-captured dataset by a hybrid airborne laser scanning sensor combined with two nadir cameras in RGB and near-infrared over a 247 km2 terrain characterized by hilly topography, urban areas, and dense forest cover. Our findings emphasize the importance of employing appropriate training and inference strategies to achieve accurate classification of data points across all categories. The proposed methodology not only facilitates the segmentation of varying size point clouds but also yields a significant performance improvement compared to preceding methodologies, achieving a mIoU of 94.24% on our self-captured dataset.

Funder

Generalitat de Catalunya

Universitat de Barcelona and Institut Cartogràfic i Geològic de Catalunya

European Next-Generation funds

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3