Accurate Mapping and Evaluation of Small Impact Craters within the Lunar Landing Area

Author:

Yang Chen12ORCID,Wang Xinglong1,Zhao Dandong1,Guan Renchu3ORCID,Zhao Haishi3

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. Laboratory of Moon and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

3. College of Computer Science and Technology, Jilin University, Changchun 130012, China

Abstract

Impact craters, as the most distinct lunar structural unit and geological structure, are marked on the Moon’s surface. For over a decade, researchers have focused on identifying and exploring large- to medium-sized impact craters on the surface of the Moon (craters with a diameter greater than 1 km). Small impact craters have obvious statistical significance owing to their magnitude in numbers. The identification and analysis of small craters provide indispensable clues for the study of lunar geological evolution. However, such craters only remain in specific images and regions. At present, there is no comprehensive record of small impact craters in the existing lunar impact crater databases. The small impact craters on the surface of the Moon are enormous and vary in size by orders of magnitude, exhibiting small target characteristics in space. The present study focuses on the identification and spatial analysis of small impact craters on the surface of the Moon. A feature amplification strategy-based identification model was established for small impact crater detection, achieving accurate recognition of the small impact craters on the surface of the Moon (with a recall rate of 86.97% and a false-positive rate as low as 0.54% ± 0.16%). In total, 228,897, 142,872, and 42,008 new small lunar impact craters (with diameters as low as 4.5 m) were identified in the ten lunar landing areas of returned samples from the Apollo, Luna, and Chang’e-5 missions. In addition, the spatial distribution characteristics of small impact craters during different geological periods in the landing area are provided. Data on the newly identified small impact craters will provide an important basis for revealing the lunar impact fluxes and young lunar surface dating in lunar geological evolution research.

Funder

National Natural Science Foundation of China

Science-Technology Development Plan Project of Jilin Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3