IfCMD: A Novel Method for Radar Target Detection under Complex Clutter Backgrounds

Author:

Zhang Chenxi1ORCID,Xu Yishi1,Chen Wenchao1,Chen Bo1,Gao Chang1,Liu Hongwei1

Affiliation:

1. National Key Lab of Radar Signal Processing, Institute of Information Sensing, Xidian University, Xi’an 710071, China

Abstract

Traditional radar target detectors, which are model-driven, often suffer remarkable performance degradation in complex clutter environments due to the weakness in modeling the unpredictable clutter. Deep learning (DL) methods, which are data-driven, have been introduced into the field of radar target detection (RTD) since their intrinsic non-linear feature extraction ability can enhance the separability between targets and the clutter. However, existing DL-based detectors are unattractive since they require a large amount of independent and identically distributed (i.i.d.) training samples of target tasks and fail to be generalized to the other new tasks. Given this issue, incorporating the strategy of meta-learning, we reformulate the RTD task as a few-shot classification problem and develop the Inter-frame Contrastive Learning-Based Meta Detector (IfCMD) to generalize to the new task efficiently with only a few samples. Moreover, to further separate targets from the clutter, we equip our model with Siamese architecture and introduce the supervised contrastive loss into the proposed model to explore hard negative samples, which have the targets overwhelmed by the clutter in the Doppler domain. Experimental results on simulated data demonstrate competitive detection performance for moving targets and superior generalization ability for new tasks of the proposed method.

Funder

National Natural Science Foundation of China

Shaanxi Youth Innovation Team Project

111 Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3