Remote Sensing Image Harmonization Method for Fine-Grained Ship Classification

Author:

Zhang Jingpu1,Zhong Ziyan2,Wei Xingzhuo3,Wu Xianyun12ORCID,Li Yunsong1

Affiliation:

1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

2. Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China

3. School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

Abstract

Target recognition and fine-grained ship classification in remote sensing face challenges of high inter-class similarity and sample scarcity. A transfer fusion-based ship image harmonization algorithm is proposed to overcome these challenges. This algorithm designs a feature transfer fusion strategy based on the combination of a region-aware instantiation and attention mechanism. Adversarial learning is implemented through an image harmony generator and discriminator module to generate realistic remote sensing ship harmony images. Furthermore, the domain encoder and domain discriminator modules are responsible for extracting feature representations of the foreground and background, and further align the ship foreground with remote sensing ocean background features through feature discrimination. Compared with other advanced image conversion techniques, our algorithm delivers more realistic visuals, improving classification accuracy for six ship types by 3% and twelve types by 2.94%, outperforming Sim2RealNet. Finally, a mixed dataset containing data augmentation and harmonizing samples and real data was proposed for the fine-grained classification task of remote sensing ships. Evaluation experiments were conducted on eight typical fine-grained classification algorithms, and the accuracy of the fine-grained classification for all categories of ships was analyzed. The experimental results show that the mixed dataset proposed in this paper effectively alleviates the long-tail problem in real datasets, and the proposed remote sensing ship data augmentation framework performs better than state-of-the-art data augmentation methods in fine-grained ship classification tasks.

Funder

China Postdoctoral Science Foundation

National Nature Science Foundation of China

111 Project

Shaanxi Provincial Science and Technology Innovation Team

Fundamental Research Funds for the Central Universities

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3