Two-Dimensional Space-Variant Motion Compensation Algorithm for Multi-Hydrophone Synthetic Aperture Sonar Based on Sub-Beam Compensation

Author:

Wu Haoran1ORCID,Zhou Fanyu1,Xie Zhimin23,Tang Jingsong1,Zhong Heping1,Zhang Jiafeng1

Affiliation:

1. Naval Institute of Underwater Acoustic Technology, Naval University of Engineering, Wuhan 430033, China

2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

3. Military Marine Environment Construction Office, Beijing 100161, China

Abstract

For a multi-hydrophone synthetic aperture sonar (SAS), the instability of the platform and underwater turbulence easily lead to two-dimensional (2-D) space-variant (SV) motion errors. Such errors can cause serious imaging problems and are very difficult to compensate for. In this study, we propose a 2-D SV motion compensation algorithm for a multi-hydrophone SAS based on sub-beam compensation. The proposed algorithm is implemented using the following four-step process: (1) The motion error of each sub-beam is obtained by substituting the sonar’s motion parameters measured in the exact motion error model established in this study. (2) The sub-beam’s targets of all targets are compensated for motion error by implementing two-phase multiplications on the raw data of the multiple-hydrophone SAS in the order of hydrophone by hydrophone. (3) The data of the sub-beam’s target compensated motion error are extracted from the raw data by utilizing the mapping relationship between the azimuth angle and the Doppler frequency. (4) The imaging result of each sub-beam is obtained by performing a monostatic imaging algorithm on each sub-beam’s data and coherently added to obtain high-resolution imaging results. Finally, the validity of the proposed algorithm was tested using simulation and real data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3