Fast, Nondestructive and Precise Biomass Measurements Are Possible Using Lidar-Based Convex Hull and Voxelization Algorithms

Author:

Siebers Matthew H.12ORCID,Fu Peng3,Blakely Bethany J.2,Long Stephen P.24,Bernacchi Carl J.12,McGrath Justin M.12

Affiliation:

1. Global Change and Photosynthesis Research Unit, USDA-ARS, 1101 W Peabody Dr., Urbana, IL 61801, USA

2. Department of Plant Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA

3. Center for Advanced Agriculture and Sustainability, Harrisburg University, Harrisburg, PA 17101, USA

4. Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL 61801, USA

Abstract

Light detection and ranging (lidar) scanning tools are available that can make rapid digital estimations of biomass. Voxelization and convex hull are two algorithms used to calculate the volume of the scanned plant canopy, which is correlated with biomass, often the primary trait of interest. Voxelization splits the scans into regular-sized cubes, or voxels, whereas the convex hull algorithm creates a polygon mesh around the outermost points of the point cloud and calculates the volume within that mesh. In this study, digital estimates of biomass were correlated against hand-harvested biomass for field-grown corn, broom corn, and energy sorghum. Voxelization (r = 0.92) and convex hull (r = 0.95) both correlated well with plant dry biomass. Lidar data were also collected in a large breeding trial with nearly 900 genotypes of energy sorghum. In contrast to the manual harvest studies, digital biomass estimations correlated poorly with yield collected from a forage harvester for both voxel count (r = 0.32) and convex hull volume (r = 0.39). However, further analysis showed that the coefficient of variation (CV, a measure of variability) for harvester-based estimates of biomass was greater than the CV of the voxel and convex-hull-based biomass estimates, indicating that poor correlation was due to harvester imprecision, not digital estimations. Overall, results indicate that the lidar-based digital biomass estimates presented here are comparable or more precise than current approaches.

Funder

Bill and Melinda Gates Foundation grant

Advanced Research Projects Agency of the U.S. Department of Energy

Agricultural Research Service of the United States Department of Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3