Deep-Learning-Based Daytime COT Retrieval and Prediction Method Using FY4A AGRI Data

Author:

Xu Fanming1,Song Biao1,Chen Jianhua2,Guan Runda3,Zhu Rongjie4,Liu Jiayu5,Qiu Zhongfeng5ORCID

Affiliation:

1. School of Software, Nanjing University of Information Science and Technology, Nanjing 211800, China

2. Nanjing Institute of Technology, Nanjing 211167, China

3. School of Computer, Nanjing University of Information Science and Technology, Nanjing 211800, China

4. School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 211800, China

5. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 211800, China

Abstract

The traditional method for retrieving cloud optical thickness (COT) is carried out through a Look-Up Table (LUT). Researchers must make a series of idealized assumptions and conduct extensive observations and record features in this scenario, consuming considerable resources. The emergence of deep learning effectively addresses the shortcomings of the traditional approach. In this paper, we first propose a daytime (SOZA < 70°) COT retrieval algorithm based on FY-4A AGRI. We establish and train a Convolutional Neural Network (CNN) model for COT retrieval, CM4CR, with the CALIPSO’s COT product spatially and temporally synchronized as the ground truth. Then, a deep learning method extended from video prediction models is adopted to predict COT values based on the retrieval results obtained from CM4CR. The COT prediction model (CPM) consists of an encoder, a predictor, and a decoder. On this basis, we further incorporated a time embedding module to enhance the model’s ability to learn from irregular time intervals in the input COT sequence. During the training phase, we employed Charbonnier Loss and Edge Loss to enhance the model’s capability to represent COT details. Experiments indicate that our CM4CR outperforms existing COT retrieval methods, with predictions showing better performance across several metrics than other benchmark prediction models. Additionally, this paper also investigates the impact of different lengths of COT input sequences and the time intervals between adjacent frames of COT on prediction performance.

Funder

2022 Jiangsu Carbon Peak and Neutrality Technology Innovation Special Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3