Abstract
Lithium-oxygen (Li-O2) batteries require rational air electrode concepts to achieve high energy densities. We report a simple but effective electrode design based on graphite nanosheets (GNS) as active material to facilitate the discharge reaction. In contrast to other carbon forms we tested, GNS show a distinctive two-step discharge behavior. Fundamental aspects of the battery’s discharge profile were examined in different depths of discharge using scanning electron microscopy and electrochemical impedance spectroscopy. We attribute the second stage of discharge to the electrochemically induced expansion of graphite, which allows an increase in the discharge product uptake. Raman spectroscopy and powder X-ray diffraction confirmed the main discharge product to be Li2O2, which was found as particulate coating on GNS at the electrode top, and in damaged areas at the bottom together with Li2CO3 and Li2O. Large discharge capacity comes at a price: the chemical and structural integrity of the cathode suffers from graphite expansion and unwanted byproducts. In addition to the known instability of the electrode–electrolyte interface, new challenges emerge from high depths of discharge. The mechanistic origin of the observed effects, as well as air electrode design strategies to deal with them, are discussed in this study.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献