Abstract
In this paper, a real-time energy distribution strategy is designed by a layer-adaptive wavelet transform algorithm and proposed to meet the load power demand while distributing the high-frequency component to supercapacitors and the low-frequency component to batteries in a hybrid energy storage system. In the proposed method, the number of decomposition layers of wavelet transform corresponding to the load power is adaptively determined by dividing the operation zone of supercapacitors into eight cases to respectively distribute the low frequency component to batteries and the remaining high frequency component to supercapacitors. Firstly, since the state of charge of supercapacitors decreases faster as the decomposition layers increases, the state of charge of supercapacitors is divided into eight cases of operation zones. Secondly, since supercapacitors act as the peak power buffer unit, the corresponding number of decomposition layers is finally adaptively determined according to the operation zone of supercapacitors. An experiment testbed is built to verify the effectiveness of the proposed method. Extensive experiment results show that the proposed method provides a better real-time energy sharing between supercapacitors and batteries when compared with the conditional method.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献