Study on Sensitivity Differences of Critical Spontaneous Ignition Temperature between Alcohol and Hydrocarbon Fuels Based on Reaction Pathway

Author:

Liu Qiang,Liu Zhongchang,Ren Xiaoming,Han Yongqiang,Wang Jun,Fang Jian

Abstract

In this article, the critical spontaneous ignition temperature of both hydrocarbon and alcohol fuel was acquired on a constant volume combustion bomb platform by slowly heating the inner charges, and then followed by using the CHEMKIN-PRO software to simulate the auto-ignition-dominated characteristic and parameter sensitivity of the two kinds of fuels. Results revealed that in different conditions, the critical spontaneous ignition temperature of methanol changed dramatically, with a maximum temperature of 50 K, while the counterpart temperature of n-heptane remained an invariable value of 553 K within a large changeable scope of temperature, and only a maximum temperature of 10 K was observed. The maximum difference of spontaneous ignition temperature between methanol and n-heptane reached 270 K. At the same time, a minimum difference of 170 K was obtained as well. The complete reaction of methanol requires 5 steps, involving 6 components and 11 elementary reactions. However, for the comparative part-n-heptane, more than 20 main self-ignition reactions were involved, which indicated that the whole reaction process of n-heptane has more reaction pathway branches and it was much more complicated compared to methanol. The differences of the reaction pathways triggered a considerable distinction of critical self-ignition temperature between the two charges, making a “step-by-step” spontaneous ignition combustion mode possible. In this way, a further high-efficient and clean combustion can be available to cater to much more stringent emission regulations in the future.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3