A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security

Author:

Kim Seong-Kyu,Kim Ung-Mo,Huh Jun-Ho

Abstract

IoT devices are widely used in the smart home, automobile, and aerospace areas. Note, however, that recent information on thefts and hacking have given rise to many problems. The aim of this study is to overcome the security weaknesses of existing Internet of Things (IoT) devices using Blockchain technology, which is a recent issue. This technology is used in Machine-to-Machine (M2M) access payment—KYD (Know Your Device)—based on the reliability of existing IoT devices. Thus, this paper proposes a BoT (Blockchain of Things) ecosystem to overcome problems related to the hacking risk of IoT devices to be introduced, such as logistics management and history management. There are also many security vulnerabilities in the sensor multi-platform from the IoT point of view. In this paper, we propose a model that solves the security vulnerability in the sensor multi-platform by using blockchain technology on an empirical model. The color spectrum chain mentioned in this paper suggests a blockchain technique completed by using the multiple-agreement algorithm to enhance Thin-Plate Spline (TPS) performance and measure various security strengths. In conclusion, we propose a radix of the blockchain’s core algorithm to overcome the weaknesses of sensor devices such as automobile, airplane, and close-circuit television (CCTV) using blockchain technology. Because all IoT devices use wireless technology, they have a fundamental weakness over wired networks. Sensors are exposed to hacking and sensor multi-platforms are vulnerable to security by multiple channels. In addition, since IoT devices have a lot of security weaknesses we intend to show the authentication strength of security through the color spectrum chain and apply it to sensor and multi-platform using Blockchain in the future.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Distributed Authentication of Blockchain Technology Integration in IoT Services;IEEE Access;2024

2. A Decision Framework for Assessing and Improving the Barriers of Blockchain Technology Adoption;Journal of Global Information Management;2023-09-15

3. Improving Security of IOT Device Using Blockchain Technology;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

4. A survey on the use of blockchains to achieve supply chain security;Information Systems;2023-07

5. Developing a System Based on Block Chain Technology for e-Voting Mechanism;Mining Intelligence and Knowledge Exploration;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3